Introduction to the ICB Breeder Tool

http://bit.ly/ICB-BreederTool

Rev. 1.4 10/16/18

Measures of Diversity & Relatedness

Essential concepts

- Inbreeding (genomic) (F or %)
- Inbreeding (fixation index) (Fis)
- Heterozygosity (Ho)
- Kinship

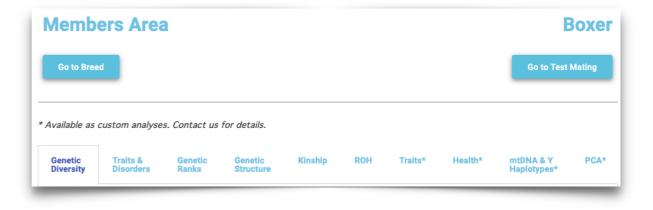
The ICB Breeder Tool uses standardized concepts and measures of genetic diversity and relatedness from population and conservation genetics.

Measures of Diversity & Relatedness

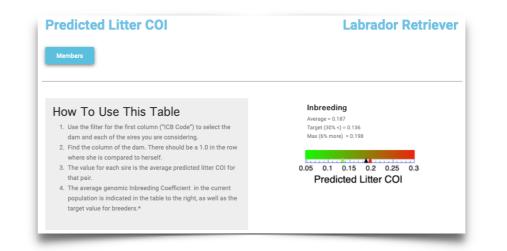
Essential numbers

6.25% (0.625) First cousin cross

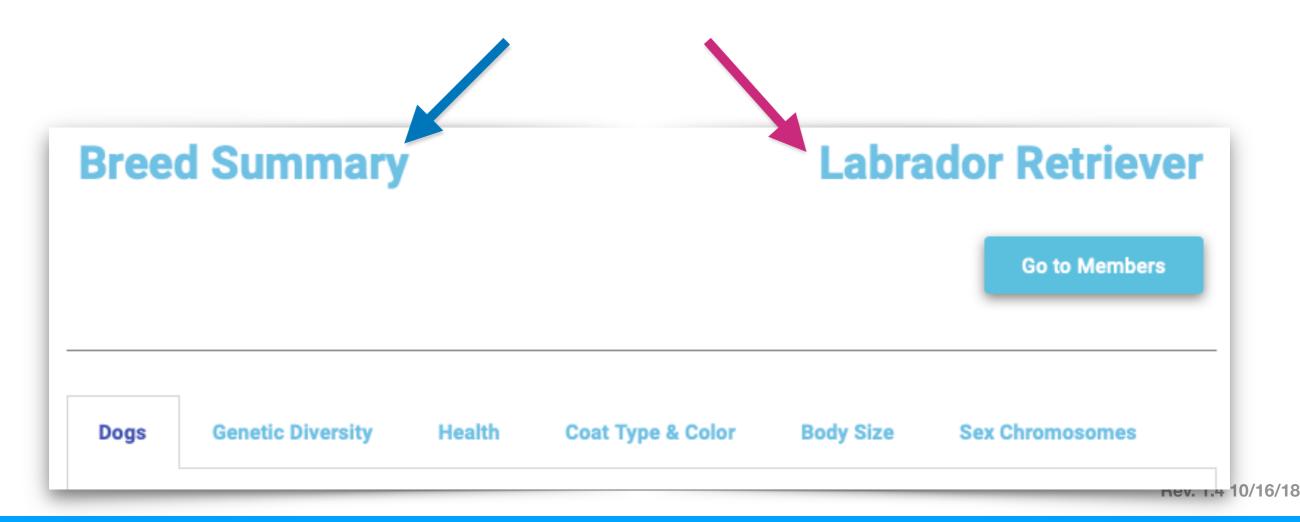
12.5% (0.125) Half-sibling cross


25% (0.25) Full-sibling cross

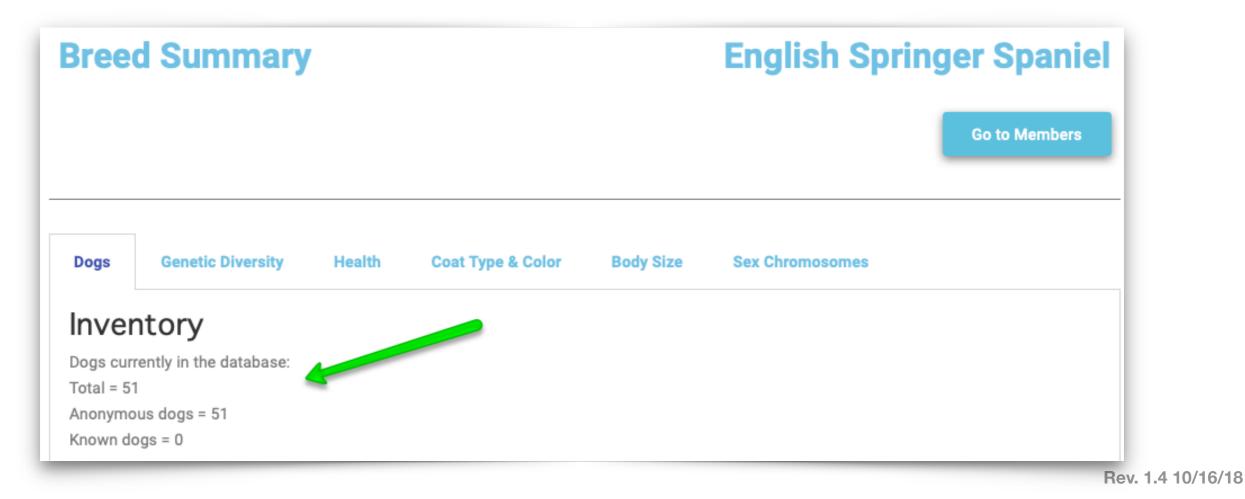
Three Modules


A) Genetic status of the breed

B) Status of Individuals


C) Test mating

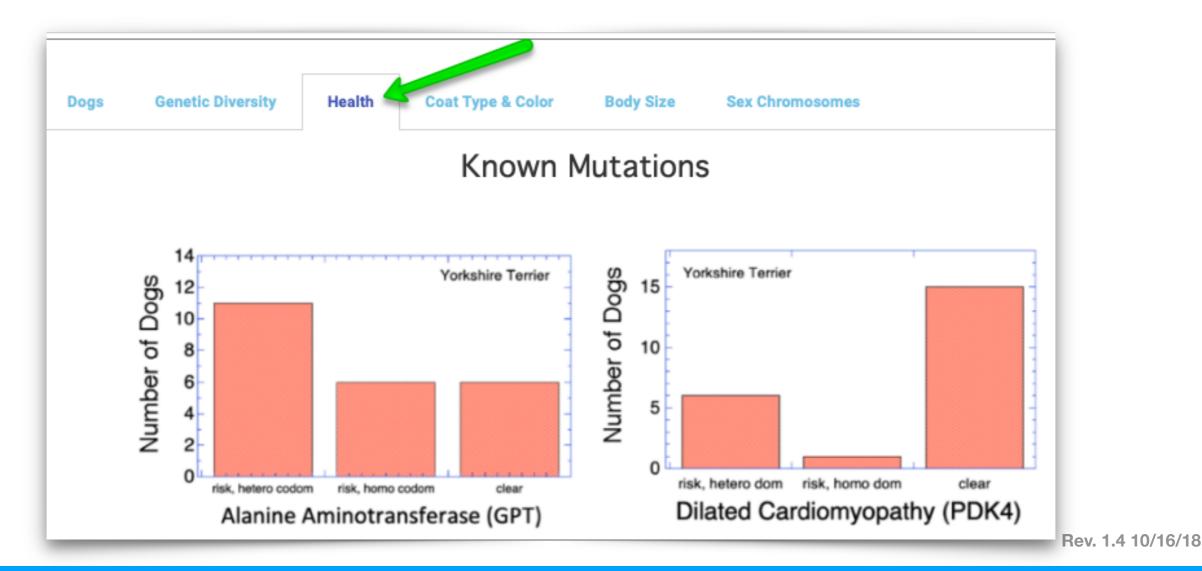
Rev. 1.4 10/16/18


Breed summary

- Genetic diversity
- Health
- Traits

Dogs (inventory)

- Total number of dogs
- Anonymous dogs
- Known dogs

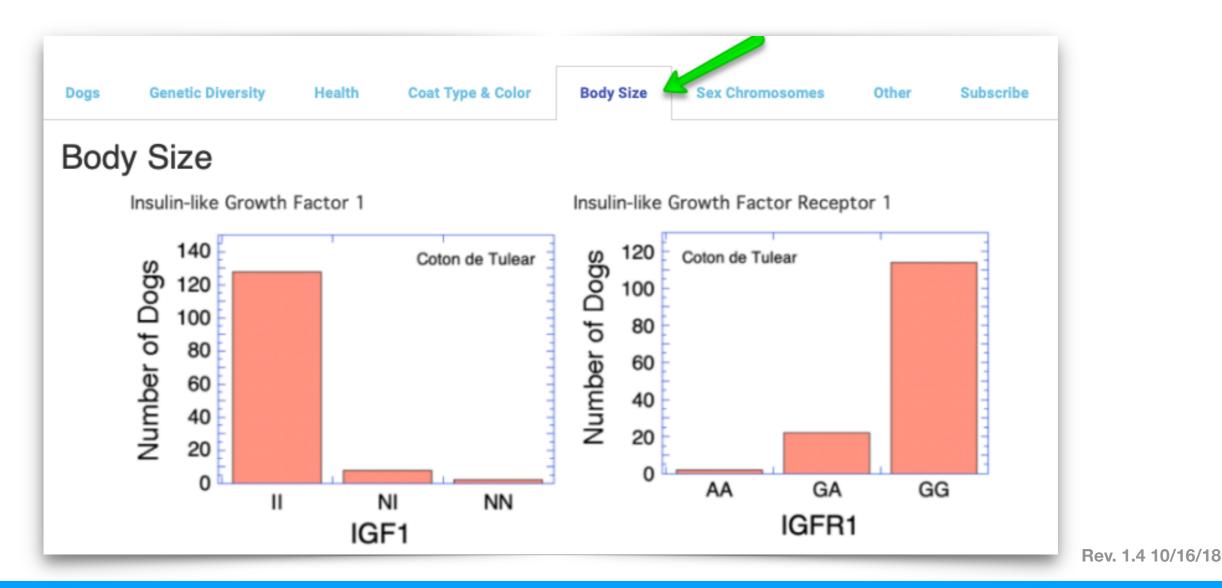

Genetic Diversity

- Inbreeding
- Kinship
- Heterozygosity

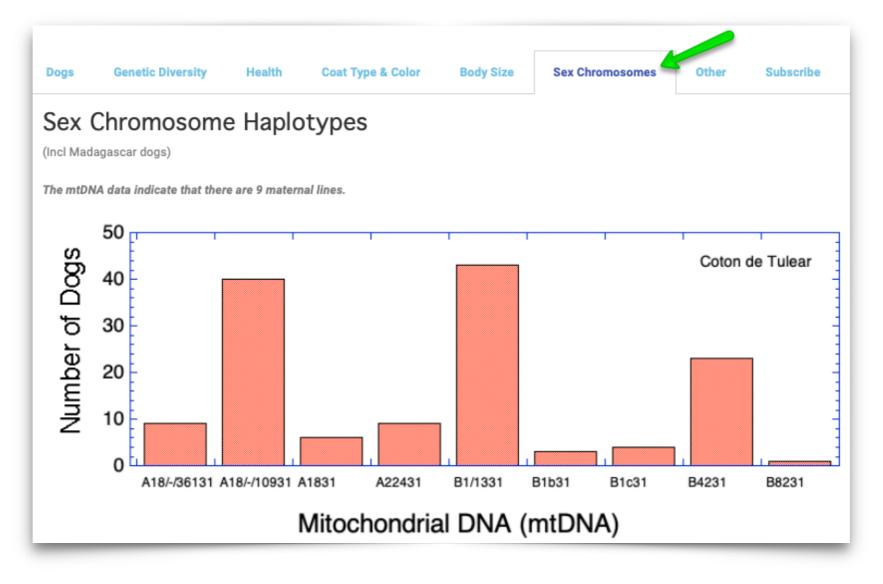
reed Summary			English Springer Spaniel				
				Go to Me	embers		
Dogs Genetic Dive	rsity Health	Coat Type & Color B	ody Size Sex Chromosor	mes			
Genetic Dive		Coat Type & Color B	ody Size Sex Chromosor	mes			
		Coat Type & Color B	ody Size Sex Chromosor Maximum	Minimum			
Genetic Dive	rsity						
Genetic Dive	rsity Mean	Median	Maximum	Minimum			

Mutation tests

Genotype frequencies

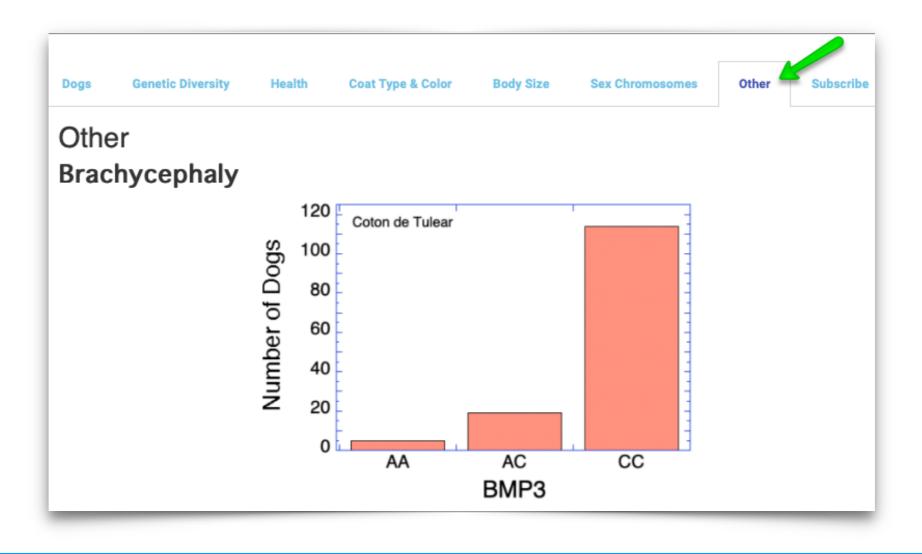

Coat type & color

• Genotype frequencies


Body size

Genotype frequencies

Sex chromosomes

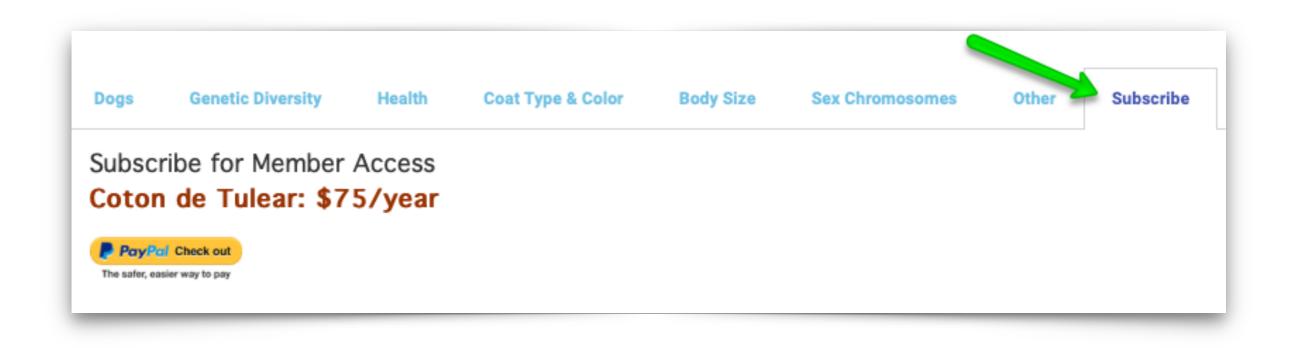

Haplotype frequencies

Rev. 1.4 10/16/18

Other traits

• As appropriate

Rev. 1.4 10/16/18


Go to members area

subscription required

Bree	d Summary			Labra	Go to Members
Dogs	Genetic Diversity	Health	Coat Type & Color	Body Size	Sex Chromosomes

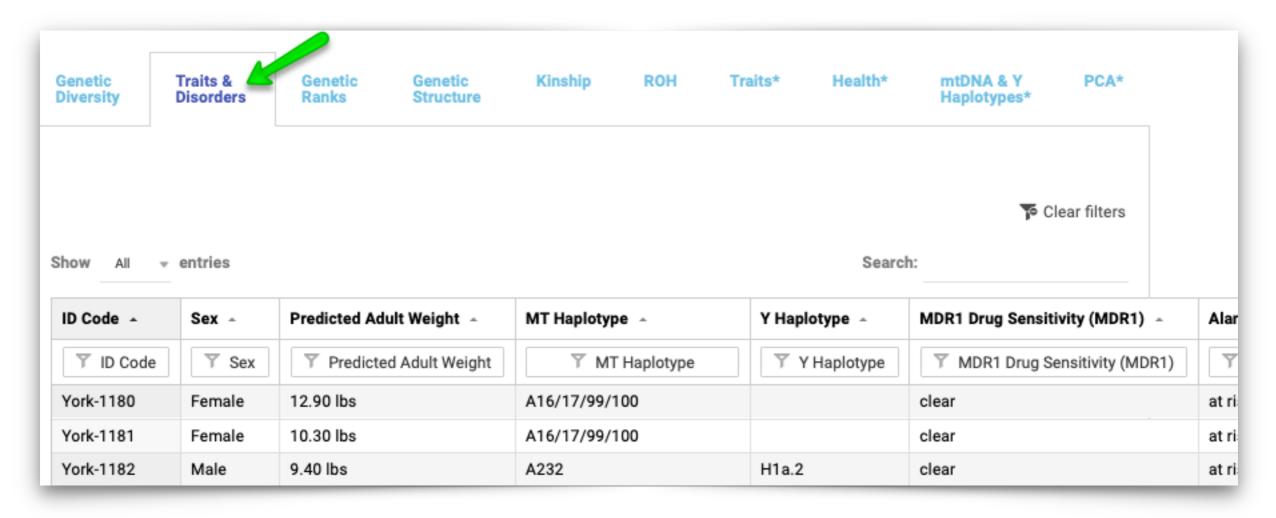
Become a Member!

• only \$75/year

Genetic statistics

- Genetic diversity
- Relatedness
- Genetic value
- Traits & mutations
- Population structure

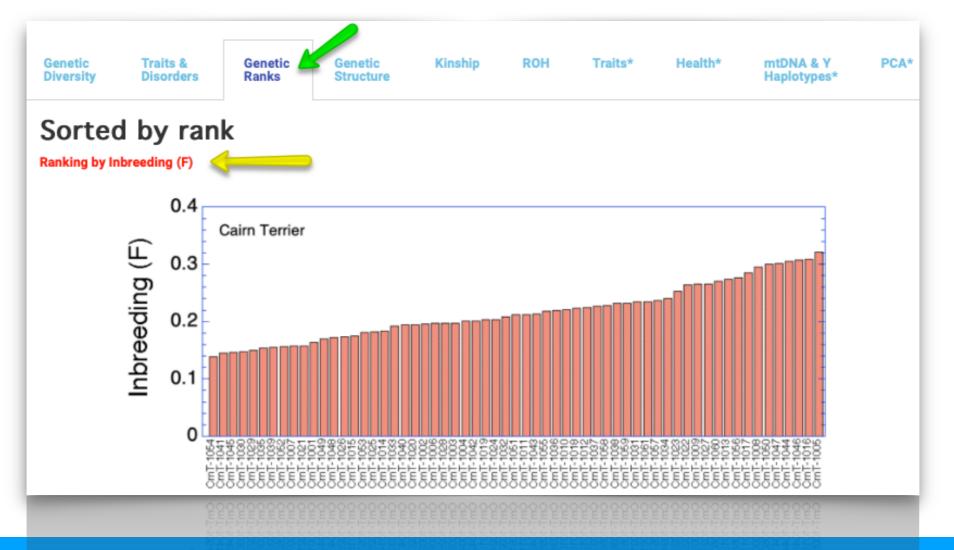
Membe	ers Area						Alas	kan Mala	mute
Go to Bree	d							Go to Test	Mating
* Available as c	custom analyses	. Contact us fo	or details.						
Genetic Diversity	Traits & Disorders	Genetic Ranks	Genetic Structure	Kinship	ROH	Traits*	Health*	mtDNA & Y Haplotypes*	PCA*


Genetic statistics

- Genetic diversity
- Relatedness

	aits & sorders	Genetic Ranks	Gen Stru	etic Kin Icture	ship RO	H Traits*	Health*	mtDNA & Y Haplotypes*	PCA
Genetic D	iversit	y							
								T	loor filtor
								P (lear filter:
how All – ei	ntries						Searc	-	Jear filters
how All – ei	ntries						Searc	-	Jear Inters
	ntries Inbreedin	ig (F) 🗠		Inbreeding (Fis) -	Mean Kinship (mK		-	
			\$	Inbreeding (Fis) -	Mean Kinship (mK Mean Kinship (mK)		h:	
ICB Code 🔺	Inbreedin		© 0.323) -	h: Heterozygosity (Ho) -
ICB Code 🔺	Inbreedin				٢) -	h: Heterozygosity (Ho	•

Genetic statistics

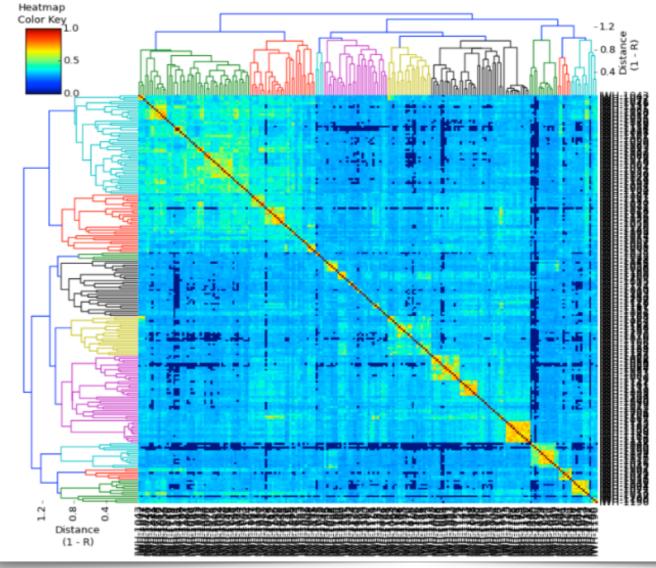

Genotypes of traits & disorders

Rev. 1.4 10/16/18

Genetic rankings

- Inbreeding & diversity
- Relatedness

Rev. 1.4 10/16/18


Genetic structure

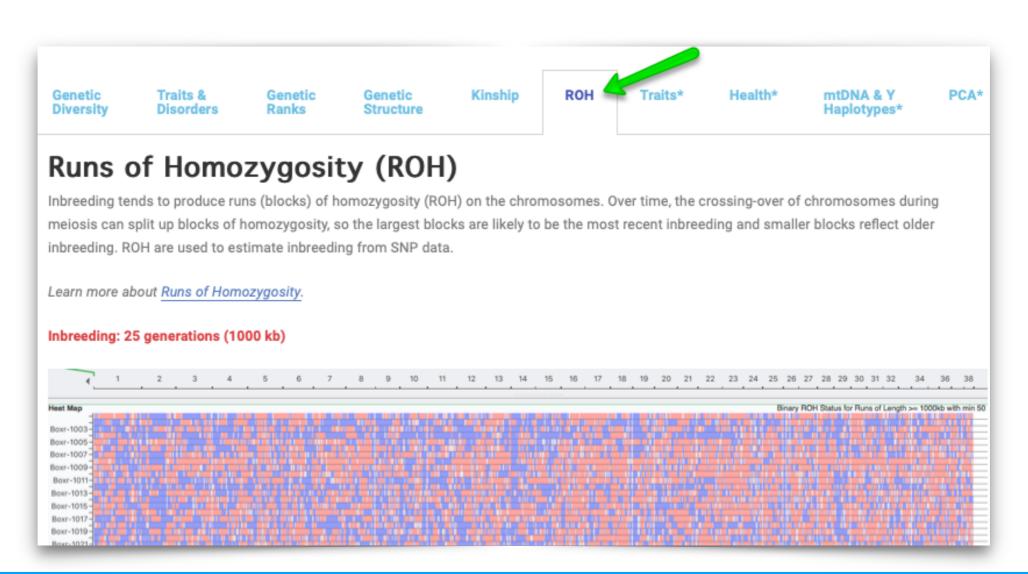
- Heatmap
- Dendrogram

Genetic Structure

The dendrogram and heat map for genetic structure are produced from the kinship coefficients.

Rev. 1.4 10/16/18

Kinship matrix


- Pairwise relatedness
- Color coded

Rev. 1.4 10/16/18

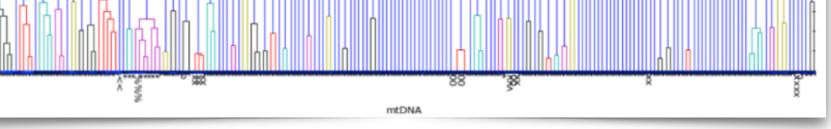
Runs of homozygosity

- Visualize inbreeding
- Color coded

Rev. 1.4 10/16/18

Disease risk

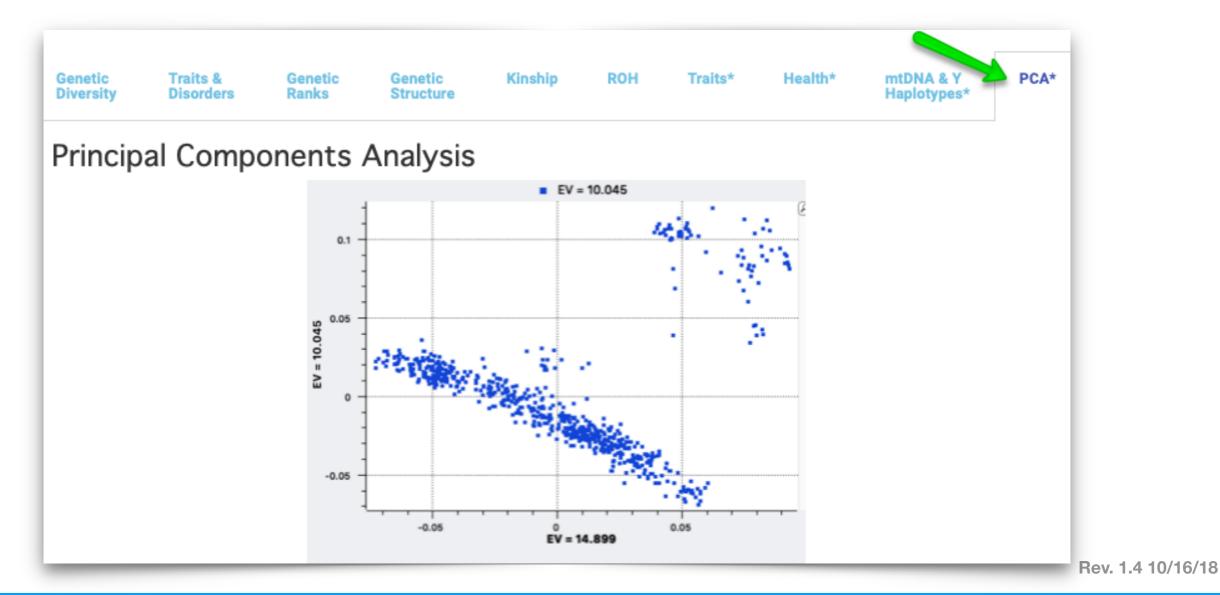
- Identify lineages
- Estimate frequency

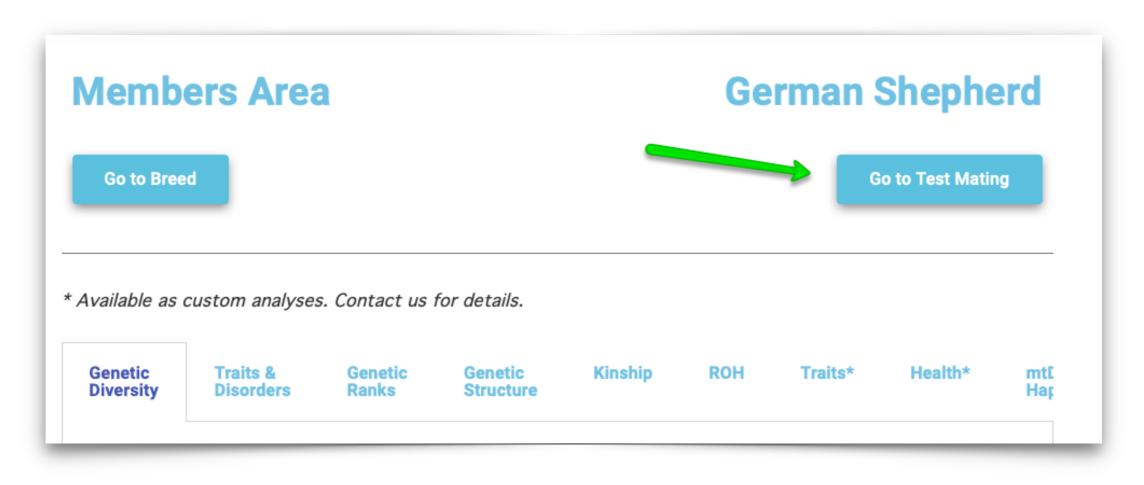


Institute of Canine Biology

Trait distribution

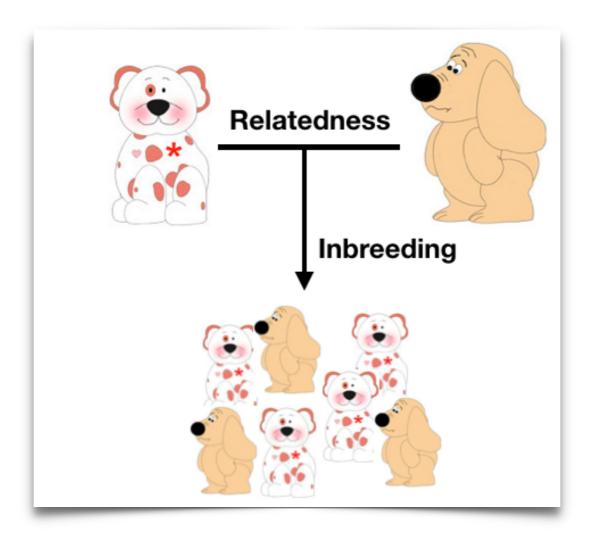
- Identify lineages
- Estimate frequency


Genetic Diversity	Traits & Disorders	Genetic Ranks	Genetic Structure	Kinship	ROH	Traits*	Health*	mtDNA & Y Haplotypes*	PCA
			Mitocho	ndrial DN	A Haplot	ypes			
Data are avail	able for 23 dogs.								
CODES									
A16/17/99/	100						00_		
A17							xx_		
A18/19//9	4/109						%%%-		
A232							*_		
A2a							XXXX_		
B1a							vvv_		
B6/8/67							>>_		
C1							c_		

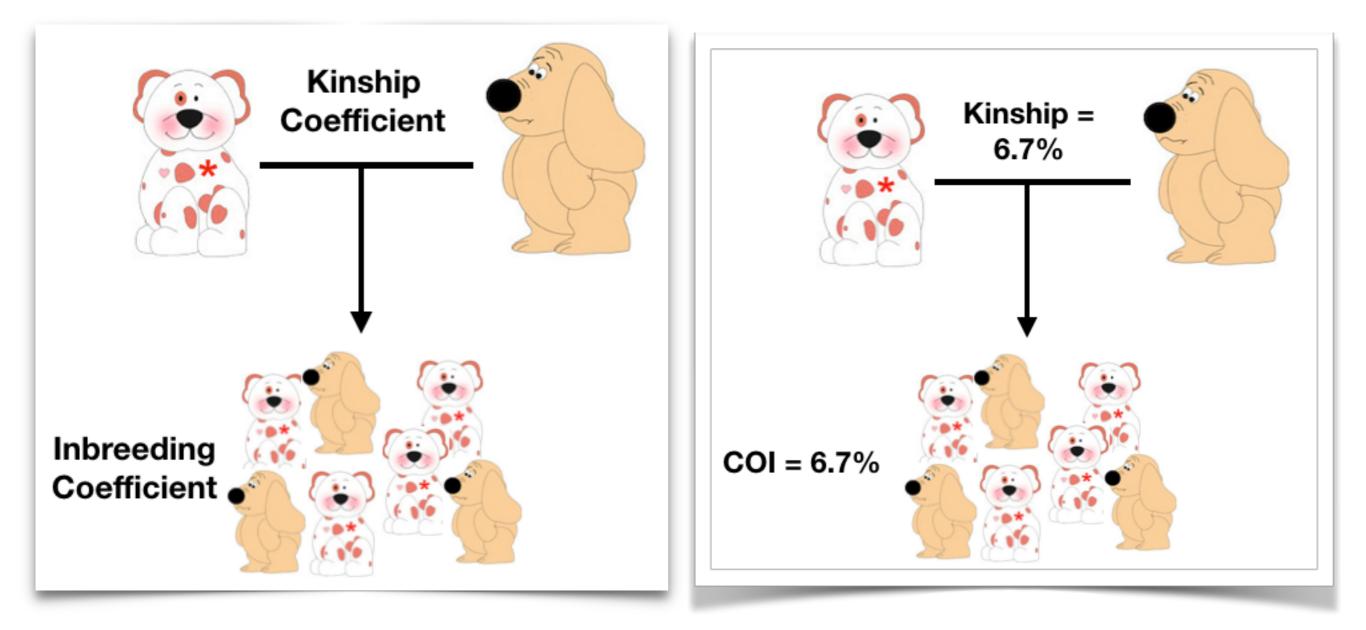

Rev. 1.4 10/16/18

Genetic distance

2-D and 3-D relationships



Rev. 1.4 10/16/18


Relatedness causes inbreeding

Rev. 1.4 10/16/18

Measures of Diversity & Relatedness

• Kinship Coefficient of parents = Litter COI

Rev. 1.4 10/16/18

Kinship coefficient

- Genetic relatedness of two dogs
- Predicted COI of their offspring

A litter produced by 1001 and 1003 has a predicted average COI of 0.58 (58%!)

0.25							
0.0625							
0							
	York-2001	York-1001	York-1002	York-1003	Yo1004	York-1005	Yo
York-2001	1.00	0.00	0.00	0.00	0.00	0.09	
York-1001	0.00	1.00	0.00	0.58	0.00	0.11	
York-1002	0.00	0.00	1.00	0.00	0.04	0.00	
York-1003	0.00	0.58	0.00	1.00	0.00	0.14	
York-1004	0.00	0.00	0.04	0.00	1.00	0.00	
York-1005	0.09	0.11	0.00	0.14	0.00	1.00	
York-1006	0.00	0.00	0.02	0.00	0.04	0.05	
York-1007	0.00	0.00	0.00	0.00	0.00	0.00	
York-1008	0.00	0.00	0.00	0.00	0.00	0.04	

Rev. 1.4 10/16/18

• Kinship matrix

Members	Predicted Litter COI					Ldi	orador R	letneve		
and each 2. Find the c where she 3. The value that pair. 4. The avera population	ter for the first c of the sires you a olumn of the dar is compared to for each sire is t ge genomic Inbr	olumn ("ICB Code are considering. m. There should I herself. the average predi eeding Coefficier the table to the ri	be a 1.0 in the root cted litter COI fo at in the current	v	Aver Targ Max 0.05		0.2 0.25	0.3		
								🍞 Clear filte	ers	
	ntries						Search:			
ICB Code 🔺	LabR-1700 -	LabR-1701 -	LabR-1702 -	LabR-1703 -	LabR-1704 -	LabR-1705 -	LabR-1706 -	LabR-1707 -	LabR-1708	~ L

Target litter COI

- Arbitrary target
- Approx. 30% reduction from mean
- "More is more"

How To Use This Table

- Use the filter for the first column ("ICB Code") to select the dam and each of the sires you are considering.
- Find the column of the dam. There should be a 1.0 in the row where she is compared to herself.
- The value for each sire is the average predicted litter COI for that pair.
- 4. The average genomic Inbreeding Coefficient in the current population is indicated in the table to the right, as well as the target value for breeders.*

Inbreeding

Average = 0.187 Target (30% <) = 0.136 Max (6% more) = 0.198

Mate selection

- Select potential sires
- Find column for the bitch
- Litter COI for each pair

	ICB Code			× How to Submit Data	-
		LabR-1191	LabR-1192		
	LabR-1190	LabR-1193	LabR-1194		
	LabR-1195	LabR-1196	LabR-1197		
Predicted Litter	LabR-1198	LabR-1199	LabR-1200	rador Re	trie
	LabR-1201	LabR-1202	LabR-1203		
	LabR-1204	LabR-1205	LabR-1206		
Members	LabR-1207	LabR-1208	LabR-1209		
_	LabR-1210	LabR-1211	LabR-1212		
	LabR-1213	LabR-1214	LabR-1215		
	LabR-1216	LabR-1217	LabR-1218		
	LabR-1219	LabR-1220	LabR-1221		
How To Use Thi	LabR-1222	LabR-1223	LabR-1224		
1. Use the filter for the first co	LabR-1225	LabR-1226	LabR-1227		
and each of the sires you a	LabR-1228	LabR-1229	LabR-1230		
2. Find the column of the dan	LabR-1231	LabR-1232	LabR-1233		
where she is compared to	LabR-1234	LabR-1235	LabR-1236		
 The value for each sire is t that pair 	LabR-1237	LabR-1238	LabR-1239	0.2 0.25 0.3	3
that pair. 4. The average genomic Inbre	LabR-1240	LabR-1241	LabR-1242	itter COI	
population is indicated in t	LabR-1243	LabR-1244	LabR-1245		
target value for breeders.*	LabR-1246	LabR-1247	LabR-1248		
	LabR-1249	LabR-1250	LabR-1251		
	LabR-1252	LabR-1253	LabR-1254		
	LabR-1255	LabR-1256	LabR-1257		
	LabR-1258	LabR-1259	LabR-1260		
	LabR-1261	LabR-1262	LabR-1263		To Cle
	LabR-1264	LabR-1265	LabR-1266		
iow 50 – citries	LabR-1267	LabR-1268	LabR-1269	earch:	
	LabR-1270	LabR-1271	LabR-1272		
CB Code A LabR-1700 A	LabR-1273	LabR-1274	LabR-1275	LabR-1706 - L	abR-17.
TICB Code	LabR-1276	LabR-1277	LabR-1278	LabR-1706 🕃 L	abR-1707
.abR-1213 0.047	LabR-1279	LabR-1280	LabR-1281	0.000	(
abR-1220 0.000	LabR-1282	LabR-1283	LabR-1284	0.000	(
	LabR-1285	LabR-1286	LabR-1287		
abR-1232 0.000	LabR-1288	LabR-1289	LabR-1290	0.000	(
LabR-1240 0.090	LabR-1291	LabR-1292	LabR-1293	0.035	(
LabR-1249 0.078	LabR-1294	LabR-1295	LabR-1296	0.013	(
LabR-1258 0.049	LabR-1297	LabR-1298	LabR-1299	0.000	0

Rev. 1.4 10/16/18

Predicted litter COIs

- Choose potential sires
- Reduce table to dogs of interest

Show 50 🔻 e	Sire	es		Dam	er COIs	Sea	Search:		
ICB Code 🔺	Lab -1700 -	LabR-1701 -	LabR-1702	LabR-1703 🔺	LabR-1704 🔺	LabR-1705 🔺	LabR-1706 -	LabR-1707 🔺	L
▼ ICB Code	LabR-1700 😌	LabR-1701 💲	LabR-1702	LabR-1703 🤤	LabR-1704 💲	LabR-1705	LabR-1706	LabR-1707	L
LabR-1213 🞽	0.047	0.000	0.062	0.000	0.000	0.000	0.000	0.000	
LabR-1226	0.091	0.043	0.056	0.000	0.058	0.058	0.060	0.000	
LabR-1228	0.016	0.015	0.042	0.000	0.049	0.049	0.000	0.000	
LabR-1236	0.053	0.000	0.050	0.000	0.074	0.074	0.000	0.000	

Showing 1 to 4 of 4 entries (filtered from 469 total entries)

Strategy

- Be aware of the genetic status of the breed
- Preserve breed genetic diversity
- Preserve rare alleles
- Reduce frequency of known mutations
- Improve heterozygosity (view ROH)
- Consider genetic value

Rev. 1.4 10/16/18